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K3 term and effective boundary condition for the nematic director
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We consider the problem of including the divergence té&mV[n(Vn)] in the macroscopic theory of a
nematic liquid crystal. The orientation of the bulk director is shown to be determined by the standard Euler-
Lagrange equation with an effective boundary condition which assumes a smooth vanishing of the nematic
density at the surface and incorporates additional subsurface deformations. This boundary condition implies
that, in three dimensions, th€,; term does not reduce to an anchoring tef81063-651X98)50707-9

PACS numbg(s): 61.30.Gd, 64.70.Md

I. INTRODUCTION Effects associated with thi€,, andK 5 terms have been
Divergence terms have been introduced in the free energ udied only over the recent decatiee reviews3 4]). For

(FE) of liquid crystals[1] and theB phase of liquid®*He[2], .stance, it was found that trt€,, t.erm gives risg to mecha-
and, generally speaking, can be important for any system th&iSTS Of spontaneous  translational and chiral symmetry
has surface or topological defects. Over recent years, threaking of the director field, which are responsible for the

problem of divergence terms has been one of the centrajariety of patterns in thin nematic film$]. In contrast, the
problems in the physics of liquid crystd3,4]. very presence of th& 3 term in the FE has been debated.

The nematic order parameter is a unit veciorcalled The latest development of this prOblem has led to the idea
director. The elastic energy of director deformations is giventhat the ideal surface concept is not adequate for the macro-
by the bulk integralF,= fdVf,. The energy density, is  Scopic theory since surface effects are affected by this unre-
the sumf,=fr—Ky,f 54+ Kqsf13 Of the terms quadratic in alistic assumption5].
the differentiation operatod, i.e.,[1], For an ideal surface, the theory predicts an intrinsic an-
choring Wj4 two to three orders of magnitude larger than
experimentally observed valugé—8]. As for theK,; term,
for several years the problem was that for any nonzérg
the functionalF, is unbounded beloW9,10]. However, this

K K K
fFZTM(Vn)Z_F TZZ(n.Vxn)Z—i- 733(nxVxn)2,

fo,=V[n(Vn)—(nV)n], D difficulty was recently shown to be actually irrelevant to the
case of the ideal surface. Namely, Barbero, Gabbasova, and
f13=V[n(Vn)]. Osipov[11] showed thaf, derived for the infinite medium

ignores the additional elastic terfp induced by translational
The elastic constants,,>0, whereaX ;3 andKy, can have  symmetry breaking at the surface. Later Faetti and Riccardi
any sign. The last two terms, called thg; andKy4, terms  revealed[12] that, in the sumf;— Koaf 245t Kisfiss, the
are total divergences and their contribution Fg can be  term«f,,4is cancelled out. Recently, this cancellation was
converted to surface integrals of the fofildSKfs. If visa  proven to be inherent for the elastic expansion if the surface
unit outer normal to the surface, the corresponding surfacg; jjeal [5]. Thus, the divergenck,; term is absent and the

densities can be written af,,s=(vn)(VN)—»(nV)n and  4nchoring is too large for a nematic body with an ideal sur-
f13s=(vn)(Vn). The divergence terms do not alter the ¢y o

Euler-Lagrange equatiaiELE) for the functionaF; and can However, a liquid is known to never end abruptly. Rather,

't?]]lu:Sﬁ:Cge director only through boundary conditions ONits densityp vanishes smoothly along with its first derivative

In field theories, the problem of boundary conditions doeg’y e some intermediate layer whose thicknkgis of order

not arise since all the fields rapidly vanish at infinity, andOf a few molecular lengthis, [13]. This|s layer representa

surface densities are absent. As a result, fields are solen‘lgfmideal surfac¢5]. Consequences of replacing an ideal sur-
determined by the ELE in which all sources are well-defined@Cc€ Py a nonideal one turn out to be important. o
three-dimensional densities. In contrast, in the elastic theory 1N€ first consequence is that for a nonideal surface, intrin-
of liquid crystals, surface densities and boundary condition§iC anchoring is much smaller tha#q, which naturally
are involved because of the standard idea dfleal surface  €xplains the mysterious smallness of the experimental values
which assumes that the densities of all physical quantitiek14,5. The second one is that if the order parameter at the
vanish steplike at the eddg®of the liquid crystal body. Con- surface is not constant, then the cancellatiorf @k is vio-
sequently, the theory resorts to surface densities of anchorirlgted[5]. In the particular case when variation of the order
W (n-dependent part of the surface tengicsurface elastic parameter is smooth and monotonic, the valuk gfderived
termsK,4f 545 andK5f 135, surface polarity, and so on. in [5] from a microscopic theory coincides with that found
by Vissenberg, Stallinga, and Vertogefl5] in the
Landau-de Gennes approgd®,17). The third consequence
*Electronic address: pergam@victor.carier.kiev.ua is that theKsterm is no longer total divergence.
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In simple geometries whene depends on a single coor- the leading termgl). However, sinc&k’ ~K/lIg> K/d, the
dinate normal tcS, the K5 term is known to induce strong source(nVk;z)(Vn)>K/d?, the subsurface mode; can be
subsurface deformations, while its effect on the observablenuch stronger than d/ and the nonlinear elasticitf, can
bulk director reduces to anchoring-related phenoni@r8—  come into play in theg layer.

20,15. However, when the tangential director derivatives do  The termf, is an infinite sum of terms with director de-
not vanish, theK,; term does not reduce to anchoring andrivatives of all orders and can be studied only numerically.
can produce elastic deformatiort®ergamenshchif10]).  Such a study was recently performed by Skaat al.[8] for
Moreover, stripe domains in a thin nematic film can be quanquite a general molecular interaction in the form of a super-
titatively explained only for nonzert,3[21]. The problem position of the Maier-Saupe and dipole-induced—dipole-
is that the boundary condition proposed[i0] to incorpo-  induced pairwise potentials. It was found that the rolé, 06
rate theK y3term and employed in Reff21] is shown to yield  mainly that the resistance to a soucA?, is about an order

a nonextremum directof22-24, and the role of theK,3  of magnitude larger than the linear one. This can be ex-
term in three-dimensional effects remains debatable. In thiﬁressed ass~ (K/Kq1) 1/ where the effective elastic con-
Rapid Communication, a consistent boundary condition Prostantk .~ 10K. We emphasize that this assumption does not
viding the missing director extremum is derived for a curvedimp|y ni~1/d and is the weakest one necessary for the ap-
nonideal surface, including the subsurface deformations 'Gplicability of elastic approach. Indeed, otherwike ~K,

nored in[10]. We show that thé 5 term acts as an elastic ni~1/,, the leading terms and all terms T are of the
term, and the subsurface mode effect reduces to additionggme oréier of magnitude, and restricting FE to any finite

anchoring with a tilted easy axis. number of terms is meaninglefs0].
This picture of director deformations makes appropriate
Il. FE OF A NEMATIC BODY WITH A NONIDEAL the separatiom=m+s of the director into surface mode
SURFACE which vanishes outside tHg layer and the bulk directom
which alone is observable. The hierarchy of deformation

The Landau-de Gennes theory can accommodate onlagnitudes can be derived from the above consideration. We
smooth variations of the order parameter. It is showf5h have

that to incorporate arbitrary spatial variations both of the
density and order parameter the constats should be
replaced by their actual spatial-dependent equivalents
K, 5(X), which vanish orf and reduce td&,,; in the bulk(at
a distancés from §). In particular, since the surface-induced where g, stands for tangential-t8-derivatives. This hierar-
term f; renormalizes botfiK,, andK3[12,5], the functions  chy means that only the normal derivative of the surface
ko4 andk;3 can be considered as effective quantities attribmode is connected to the fast variations acrossl gHayer
uted to the sum of; and the bulkk,, andK 5 terms. Since  whereas all others are connected to standard macroscopic
Kqsxp® both k,s and its normal derivative vanish &  |engthsd. In particular, Eq(3) in the formlg|s’|<1 implies
along with p, and boundary conditions do not arise. Sincethat in spite of a large derivative, the total surface varia-
even a thin intermediate layer is now described by ELE, ongion of sis negligible compared tm, and hence one can set
can think only of some effective “boundary” condition ob- n=m in the expressions that do not contain.
tained by averaging this ELE over the surface layer. Consider all possible FE terms. Making use of integration
For the ideal surface and an arbitrary geometry, any finitayy parts (2), the divergence terms can be reduced to
value of K13 makes the free energil) unbounded below —f,, (»V)kys— fou5(¥V)kps. Further, to be consistent with
[9,10]. Vanishing of the functionky3 on S automatically  our approach, the anchoringy has to be represented by its
brings a lower boundary to the FE. Indeed, consider the surylk density f,(n,x) ~W/ls ~K/(ld), defined as
JdVIky1(Vn)?+kyg(X)f 15]. Integrating by parts, W= [d(vx)f, [10].
Finally, introducingfe = fr(k)+iAn?, wherefg(k) is
- _ fr (1) with the constantX,, replaced by the functions
f Vi) VIn(Vm]= f aviym (ks (2) K.o(X) and\ is the Lagrange multiplier, the true FE func-
tional of nematic body with a nonideal surface can be written

the integrand reduces to ky(Vn)>—(Vn)(nV)k,; N the formF .= [dVf, where

=— 1/4ky,|Vk,42, and thus the FE has a lower boundary.

The term(nVk;9)(Vn) is seen to be a kind of Lifshitz term f=Fr—f135(0V)kaat foas(¥V)Kogt fart fp. (4)

which produces director deformations in theg layer [9].

Since elastic constants vary fast only along the normeal

S, one has(nVk;3)=(vn)(»V)k,3, and these deformations The quantities entering satisfy the following conditions: on

imply large normal-to-surface director derivativeSin the S, K,g(X)=k/z(X)=f,=f,=0; in the bulk outside thésg

| s layer[9] (normal derivatives will be labeled by the prijme layer, f,=f,=0 andk,z(x)=K,z. By virtue of these con-
The standard density of deformation sources in a nematiditions, functionalF,,,, has a minimum determined by its

phase is of ordeK/d?, whered is a macroscopic length ELE alone. The magnitude hierarct8) enables one to treat

(typically d~1um), and results in deformationan~ 1/d. this ELE by separating terms of different orders in the small

The elastic resistance to such deformations is lifelmok  quantities s/d ands’l s~ (K/Kgy). Thus, obtained equations

law), i.e., higher order term§;, are negligible compared to of the two leading orders will be considered below.

|om|~|d,9~1Md<|s' |<1s~k’, (3)
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Ill. SEPARATION OF THE SURFACE MODE Here the effective elastic resistan€g;= K + Ky, whereK,, is
AND OBSERVABLE DIRECTOR the higher order contributior.s~ 10K, as was indicated

above. The obtained dependence o is similar to that for
the ideal surfac¢l18]; the difference is that, as is seen from
mEq. (8), at the nonideal surfaceoscillates. At the same time,
the K45 term does not induce the surfagemode.

To consider an arbitrary geometry of a liquid crystal we
introduce the curvilinear orthogonal coordinate syste
(X1,X2,X3) with metric tensorg;; [10]. Let the geometrical
boundaryS coincide with the coordinate surfacg=const
=&. Thenx, andx, are the orthogonal coordinates rand
on other surfaceg;= const, and the outer normal to each of
these “parallel” surfaces is directed along the coordinate ELE (6) does not determine the observable direator
line x5, i.e., »(x)=(0,0,1); the differentials of the area of uniquely, since its solution still depends on arbitrary func-
any surfacex;=const and of the volume are, respectively, tions (constants in the simplest cageblow we can derive
dS=ggdx;dx, and dV=\gdxdx,dx;=dSdxygs; the effective boundary condition to these equations and make
where gs=0110,, and g=0110,,033. The intermediatdg  the description in terms af closed. To this end we integrate
layer is sandwiched between the surfacgsS; and x3 Eq. (5) over \gsxdxs from Sy— | g to Sy within the context of
=S—ls. hierarchy(3). This yields the desired boundary condition in

The general ELE for the total directorboth in the bulk  the form
and in thel g layer is

IV. EFFECTIVE BOUNDARY CONDITIONS

ofe  of, 1

z?f”
ot .9 _ Y935 (3amy) ~ amy _‘93( @a(asmk))
Ji Ain |Vot=0, ) 9s
e g '\ ading) Tk
19(fH+W+ Wy3)
where the operator + My +Asm=0, ©
A =g 94 ‘... where the subscrips can take only values 1 and 2.
1My J &(&I él]nk) i’ (9( (9i (9] ﬂj’nk) The Surface denS|t|eSf||: - K24f24s+ K13f 138~ fL al’ld

f, =Kz(wn)(vV)(vn) introduced in [10] contain the
incorporates higher order director derivativesfip; i,j,k normal-to-surface and tangential director derivatives, respec-
=1,2,3 and summation over repeating indices is implied. Atively; m and g;; are the surface values of the observable
the same time, the bulk directan is determined by Eq5)  director and metric tensor d. The quantityW,; is addi-
in which all the subsurface sources andre set to zero and tional, aK,3; connected anchoring term. It is induced by the
Keg=Kgap, 1€, surface mods in the intermediate layer and appears only for

nonvanishin . Its origin follows from its form, i.e.,

o 1 a(\gfe) Jus °

—— —d——-+Axm=0. (6) W 1 %!
ome g ' d(dimy) “ = f dzKs'(0)cos 2. (10)
So

a0 V033
Here we recognize the standard ELE for the bulk diregtor . L _
which has been the basis of the continuum theory before theimple estimate witls’ (8) yields

problem of divergence terms came into light. Now we will Ky [Kis)?
consider the surface modawhich is coupled tan in thelg 13~ W(K_) cos 40
layer. S Tef

In view of Eqg.(3), one can expeci to be determined by with easy axisf,5=m/4. For plausible valuegs=5ly,,
the leading terms in Ed5). Obviously, these terms contain K,,/K~0.1, its magnitude- K,;/(10%,,) which is about
normal derivativek’ of the elastic “constants” and’ (the  ten times smaller that the standard anchoring strength. If,
prime now stands for the; derivative). For further consid- however, K;3/Ko; was about 1 thenW,;s~K,/(1071y),
eration it is convenient to introduce the polar anglebe-  which for smooth surfaces is larger than the observed an-
tween v and n and the azimuthal angles, i.e., choring(see alsd18]). Since usually surfaces have an easy
n=(sin® cos¢, sin® sin¢, cos®). Direct calculation yields axis atd=0 or #= /2, the effect of strongV, 5 orienting the

the leading part of th® equation in the form director atm/4 would have been observed. Thus, experimen-
K" tal data support the inequalit;3/K¢;<1.
K's + — 23 sin2®+A3,®fr’]:O, 7 In terms of the angle$ and ¢, Eq. (9) reads
293

\/— afe K1z 1 \/— (9f||
where k=ky;+ (Ks3—kq1)co€0. Equation (3) implies 9355(5,0) E(agﬁ)cos 26 Eas 953(4.6)

=0, whered is the angle betweenand the bulk directom,

wherea®®)’'= s'=(0— 6)’'. Then Eq.7) reduces to follow- W+ Wyz+f))

ing relation between the surface mode and surface value of + T:O’ (12)
the observable angle:

Vg~ =

kis . 38 o ﬁs( VOs
S§'=— ———sin 26 = . 8 5(07 d’) \ (9(
2\0g33Kes n2006=%) © i %

(9f” )+ (9(W+fH) _o.

dsP) d
(12
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These boundary conditions along with the “wai bulk  whereW is the total anchoring. We see that the meaning of
Euler-Lagrange equatiorn$) unambiguously determine the F, (1) is that Folmeq is equal to theequilibrium FE
observable directom(x). Let us briefly describe some basic F,{n.q} plus certain anchoring terms. This enables one to
properties of the general boundary conditions. compare FEs for different solutions,, of the systemg6)

If 6, ¢, andg;; depend on the single coordinatg, both  and(9) and select the one with lower FE. At the same time,
the K43 and K, terms reduce to additional anchoring terms cajculatingF,{m,q for arbitrary nonequilibriumfunction
and do not manifest their elastic nature. This can be b“eﬂ¥nneq has no meaning In particular, comparing values

illustrated fqrg”:l (plane layer. Iln this case,fj=0 and Fa{Mpeq for two different myeq or for myeq and meq is
the 6 equation(11) reduces toK o' +9We/9¢=0, where  oqningless, SinCA,¢q iS NOt @ minimizer of the true FE

K=Kyst (Kgg—Ky)cos'o, and and is unstable. It is this forbidden procedure that has re-

de A(W+W,5) sulted in the extra contributiomK (5 to the boundary condi-
Wei(0)= f 13 20 . (13 tion of Ref.[10] and, consequently, in a nonextremum direc-
(1— ?cos 20) tor criticized in[22—24. In contrast, boundary conditig®),

which is derived from the ELE, automatically provides the

However, ifm depends on two or three coordinat€arte-  extremity.

sian or curvilinearand the tangential derivativesm do not In spite of the difference, boundary conditié® and the
vanish, thenf enters theg-boundary condition(11), and one proposed if10] have important common properties:
both theK 53 andK,, terms cannot be reduced to anchoringthey do not explicitly depend on higher order terms, and the
terms. Therefore, in general, tKg; term whose contribution K13 contribution corresponds to elasticity which, in general,
to the boundary condition contains the normal director decannot be reduced to anchoring. The elastic nature dfthe
rivative produces elasticity that can be conventionally reterm was crucial to the conclusion of that fitting the experi-

ferred to as surfacelike. mental data on stripe domains in a thin nematic film is pos-
sible for nonzerdK ;5 [21]. Of course, this should be reex-
V. THE ROLE OF F, amined in the context of the corrected boundary condi-
tion (9).

For K,3=0, the observable director satisfies the equations
which minimize the nase functional F,. In contrast, for
K13# 0, the only meaningful minimization can be performed
for Fyue. NOnethelessy, has certain important implications
in finding the minimizers of,c. Namely, ifn.q is a solu-
tion of the exact equatior(§) while m satisfies the systems
(6) and (9), then up to small term®(lgs’),
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