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K13 term and effective boundary condition for the nematic director

V. M. Pergamenshchik*
Institute of Physics, Prospect Nauki 46, Kiev 252022, Ukraine

~Received 5 February 1998!

We consider the problem of including the divergence termK13¹@n„¹n)] in the macroscopic theory of a
nematic liquid crystal. The orientation of the bulk director is shown to be determined by the standard Euler-
Lagrange equation with an effective boundary condition which assumes a smooth vanishing of the nematic
density at the surface and incorporates additional subsurface deformations. This boundary condition implies
that, in three dimensions, theK13 term does not reduce to an anchoring term.@S1063-651X~98!50707-6#

PACS number~s!: 61.30.Gd, 64.70.Md
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I. INTRODUCTION

Divergence terms have been introduced in the free ene
~FE! of liquid crystals@1# and theB phase of liquid3He @2#,
and, generally speaking, can be important for any system
has surface or topological defects. Over recent years,
problem of divergence terms has been one of the cen
problems in the physics of liquid crystals@3,4#.

The nematic order parameter is a unit vectorn called
director. The elastic energy of director deformations is giv
by the bulk integralF25*dV f2 . The energy densityf 2 is
the sum f 25 f F2K24f 241K13f 13 of the terms quadratic in
the differentiation operator], i.e., @1#,

f F5
K11

2
~¹n!21

K22

2
~n–¹3n!21

K33

2
~n3¹3n…2,

f 245¹†n„¹n…2„n¹…n], ~1!

f 135“@n„¹n!].

The elastic constantsKaa.0, whereasK13 andK24 can have
any sign. The last two terms, called theK13 andK24, terms
are total divergences and their contribution toF2 can be
converted to surface integrals of the form*dSK fS . If n is a
unit outer normal to the surface, the corresponding surf
densities can be written asf 24,S5(nn…„¹n…2n„n¹…n and
f 13,S5(nn…„¹n). The divergence terms do not alter th
Euler-Lagrange equation~ELE! for the functionalF2 and can
influence the director only through boundary conditions
the surfaceS.

In field theories, the problem of boundary conditions do
not arise since all the fields rapidly vanish at infinity, a
surface densities are absent. As a result, fields are so
determined by the ELE in which all sources are well-defin
three-dimensional densities. In contrast, in the elastic the
of liquid crystals, surface densities and boundary conditi
are involved because of the standard idea of anideal surface,
which assumes that the densities of all physical quanti
vanish steplike at the edgeS of the liquid crystal body. Con-
sequently, the theory resorts to surface densities of ancho
W (n-dependent part of the surface tension!, surface elastic
termsK24f 24,S andK13f 13,S , surface polarity, and so on.
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Effects associated with theK24 andK13 terms have been
studied only over the recent decade~see reviews@3,4#!. For
instance, it was found that theK24 term gives rise to mecha
nisms of spontaneous translational and chiral symme
breaking of the director field, which are responsible for t
variety of patterns in thin nematic films@3#. In contrast, the
very presence of theK13 term in the FE has been debate
The latest development of this problem has led to the i
that the ideal surface concept is not adequate for the ma
scopic theory since surface effects are affected by this u
alistic assumption@5#.

For an ideal surface, the theory predicts an intrinsic
choring Wid two to three orders of magnitude larger tha
experimentally observed values@6–8#. As for theK13 term,
for several years the problem was that for any nonzeroK13

the functionalF2 is unbounded below@9,10#. However, this
difficulty was recently shown to be actually irrelevant to t
case of the ideal surface. Namely, Barbero, Gabbasova,
Osipov@11# showed thatF2 derived for the infinite medium
ignores the additional elastic termf 1 induced by translationa
symmetry breaking at the surface. Later Faetti and Ricca
revealed@12# that, in the sumf 12K24f 24,S1K13f 13,S , the
term } f 13,S is cancelled out. Recently, this cancellation w
proven to be inherent for the elastic expansion if the surf
is ideal@5#. Thus, the divergenceK13 term is absent and the
anchoring is too large for a nematic body with an ideal s
face.

However, a liquid is known to never end abruptly. Rath
its densityr vanishes smoothly along with its first derivativ
over some intermediate layer whose thicknessl S is of order
of a few molecular lengthsl M @13#. This l S layer representsa
nonideal surface@5#. Consequences of replacing an ideal s
face by a nonideal one turn out to be important.

The first consequence is that for a nonideal surface, int
sic anchoring is much smaller thanWid , which naturally
explains the mysterious smallness of the experimental va
@14,5#. The second one is that if the order parameter at
surface is not constant, then the cancellation off 13,S is vio-
lated @5#. In the particular case when variation of the ord
parameter is smooth and monotonic, the value ofK13 derived
in @5# from a microscopic theory coincides with that foun
by Vissenberg, Stallinga, and Vertogen@15# in the
Landau-de Gennes approach@16,17#. The third consequence
is that theK13term is no longer total divergence.
R16 © 1998 The American Physical Society
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In simple geometries wheren depends on a single coo
dinate normal toS, the K13 term is known to induce strong
subsurface deformations, while its effect on the observa
bulk director reduces to anchoring-related phenomena@9,18–
20,15#. However, when the tangential director derivatives
not vanish, theK13 term does not reduce to anchoring a
can produce elastic deformations~Pergamenshchik@10#!.
Moreover, stripe domains in a thin nematic film can be qu
titatively explained only for nonzeroK13 @21#. The problem
is that the boundary condition proposed in@10# to incorpo-
rate theK13 term and employed in Ref.@21# is shown to yield
a nonextremum director,@22–24#, and the role of theK13
term in three-dimensional effects remains debatable. In
Rapid Communication, a consistent boundary condition p
viding the missing director extremum is derived for a curv
nonideal surface, including the subsurface deformations
nored in@10#. We show that theK13 term acts as an elasti
term, and the subsurface mode effect reduces to additi
anchoring with a tilted easy axis.

II. FE OF A NEMATIC BODY WITH A NONIDEAL
SURFACE

The Landau-de Gennes theory can accommodate
smooth variations of the order parameter. It is shown in@5#
that to incorporate arbitrary spatial variations both of t
density and order parameter the constantsKab should be
replaced by their actual spatial-dependent equivale
kab„x…, which vanish onS and reduce toKab in the bulk~at
a distancel S from S). In particular, since the surface-induce
term f 1 renormalizes bothK24 andK13 @12,5#, the functions
k24 and k13 can be considered as effective quantities attr
uted to the sum off 1 and the bulkK24 andK13 terms. Since
kab}r2, both kab and its normal derivative vanish atS
along with r, and boundary conditions do not arise. Sin
even a thin intermediate layer is now described by ELE, o
can think only of some effective ‘‘boundary’’ condition ob
tained by averaging this ELE over the surface layer.

For the ideal surface and an arbitrary geometry, any fin
value of K13 makes the free energy~1! unbounded below
@9,10#. Vanishing of the functionk13 on S automatically
brings a lower boundary to the FE. Indeed, consider the s
*dV†k11„“n…21k13(x…f 13#. Integrating by parts,

E dVk13~x…¹†n„¹n…#52E dV„¹n…„n¹…k13, ~2!

the integrand reduces to k11„¹n…22„¹n…„n¹…k13
>2 1/4k11 u“k13u2, and thus the FE has a lower bounda
The term„n¹k13)„¹n… is seen to be a kind of Lifshitz term
which produces director deformations in thel S layer @9#.
Since elastic constants vary fast only along the normaln to
S, one has„n¹k13).„vn…„n¹…k13, and these deformation
imply large normal-to-surface director derivativesn8 in the
l S layer@9# ~normal derivatives will be labeled by the prime!.

The standard density of deformation sources in a nem
phase is of orderK/d2, where d is a macroscopic length
~typically d;1mm), and results in deformations]n;1/d.
The elastic resistance to such deformations is linear~Hook
law!, i.e., higher order termsf h are negligible compared to
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the leading terms~1!. However, sincek8;K/ l S@ K/d, the
source„n¹k13)„¹n…@K/d2, the subsurface modenS8 can be
much stronger than 1/d, and the nonlinear elasticityf h can
come into play in thel S layer.

The termf h is an infinite sum of terms with director de
rivatives of all orders and can be studied only numerica
Such a study was recently performed by Skacˇej et al. @8# for
quite a general molecular interaction in the form of a sup
position of the Maier-Saupe and dipole-induced–dipo
induced pairwise potentials. It was found that the role off h is
mainly that the resistance to a sourceK/ l M

2 is about an order
of magnitude larger than the linear one. This can be
pressed asnS8;(K/Ke f)1/l M where the effective elastic con
stantKe f;10K. We emphasize that this assumption does
imply nS8;1/d and is the weakest one necessary for the
plicability of elastic approach. Indeed, otherwiseKe f;K,
nS8;1/l M , the leading terms and all terms inf h are of the
same order of magnitude, and restricting FE to any fin
number of terms is meaningless@10#.

This picture of director deformations makes appropri
the separationn5m1s of the director into surface modes
which vanishes outside thel S layer and the bulk directorm
which alone is observable. The hierarchy of deformat
magnitudes can be derived from the above consideration.
have

u]mz;u] tsz;1/d!us8u!1/l S;k8, ~3!

where] t stands for tangential-to-S derivatives. This hierar-
chy means that only the normal derivative of the surfa
mode is connected to the fast variations across thel S layer
whereas all others are connected to standard macrosc
lengthsd. In particular, Eq.~3! in the forml Sus8u!1 implies
that in spite of a large derivatives8, the total surface varia-
tion of s is negligible compared tom, and hence one can se
n5m in the expressions that do not contain]n.

Consider all possible FE terms. Making use of integrat
by parts ~2!, the divergence terms can be reduced t
2 f 13,S„n¹…k132 f 24,S„n¹…k24. Further, to be consistent with
our approach, the anchoringW has to be represented by i
bulk density f a(n,x) ;W/ l S ;K/( l Sd), defined as
W5*d(nx) f a @10#.

Finally, introducing f̃ F 5 f F(k)1 1
2 ln2, where f F(k) is

f F ~1! with the constantsKaa replaced by the functions
kaa(x) and l is the Lagrange multiplier, the true FE func
tional of nematic body with a nonideal surface can be writ
in the formFtrue5*dV f, where

f 5 f̃ F2 f 13,S„n¹…k131 f 24,S„n¹…k241 f a1 f h . ~4!

The quantities enteringf satisfy the following conditions: on
S, kab(x…5kab8 (x…5f h5 f a50; in the bulk outside thel S

layer, f a5 f h50 andkab(x…5Kab . By virtue of these con-
ditions, functionalFtrue has a minimum determined by it
ELE alone. The magnitude hierarchy~3! enables one to trea
this ELE by separating terms of different orders in the sm
quantitiesl S /d ands8l S;(K/Ke f). Thus, obtained equation
of the two leading orders will be considered below.
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III. SEPARATION OF THE SURFACE MODE
AND OBSERVABLE DIRECTOR

To consider an arbitrary geometry of a liquid crystal w
introduce the curvilinear orthogonal coordinate syst
(x1 ,x2 ,x3) with metric tensorgi j @10#. Let the geometrical
boundaryS coincide with the coordinate surfacex35const
5S0. Thenx1 andx2 are the orthogonal coordinates onS and
on other surfacesx35const, and the outer normal to each
these ’’parallel’’ surfaces is directed along the coordin
line x3 , i.e., n„x…5(0,0,1); the differentials of the area o
any surfacex35const and of the volume are, respective
dS5AgSdx1dx2 and dV5Agdx1dx2dx35dSdx3Ag33,
where gS5g11g22 and g5g11g22g33. The intermediatel S
layer is sandwiched between the surfacesx35S0 and x3
5S02 l S .

The general ELE for the total directorn both in the bulk
and in thel S layer is

] f

]nk
2

1

Ag
] i S ]

]~] ink!
2L i ,nkDAg f50, ~5!

where the operator

L i ,nk
5] j

]

]~] i] jnk!
2] j] j 8

]

]~] i] j] j 8nk!
1•••

incorporates higher order director derivatives inf h ; i , j ,k
51,2,3 and summation over repeating indices is implied.
the same time, the bulk directorm is determined by Eq.~5!
in which all the subsurface sources ands are set to zero and
kab5Kab , i.e.,

] f F

]mk
2

1

Ag
] i

]~Ag fF!

]~] imk!
1lmk50. ~6!

Here we recognize the standard ELE for the bulk directorm,
which has been the basis of the continuum theory before
problem of divergence terms came into light. Now we w
consider the surface modes which is coupled tom in the l S
layer.

In view of Eq. ~3!, one can expects to be determined by
the leading terms in Eq.~5!. Obviously, these terms contai
normal derivativesk8 of the elastic ‘‘constants’’ ands8 ~the
prime now stands for thex3 derivative). For further consid
eration it is convenient to introduce the polar angleQ be-
tween n and n and the azimuthal anglef, i.e.,
n5„sinQ cosf, sinQ sinf, cosQ). Direct calculation yields
the leading part of theQ equation in the form

k8s81
k139

2Ag33

sin 2Q1L3,Q f h
850, ~7!

where k5k111(k332k11)cos2Q. Equation ~3! implies Q
.u, whereu is the angle betweenn and the bulk directorm,
whereasQ8. s85(Q2u)8. Then Eq.~7! reduces to follow-
ing relation between the surface mode and surface valu
the observable angleu:

s8.2
k138

2Ag33Ke f

sin 2u~x35S0!. ~8!
e

,

t

e

of

Here the effective elastic resistanceKe f5K1Kh whereKh is
the higher order contribution;Ke f;10K11 as was indicated
above. The obtainedu dependence ofs is similar to that for
the ideal surface@18#; the difference is that, as is seen fro
Eq. ~8!, at the nonideal surfaces oscillates. At the same time
the K13 term does not induce the surfacef-mode.

IV. EFFECTIVE BOUNDARY CONDITIONS

ELE ~6! does not determine the observable directorm
uniquely, since its solution still depends on arbitrary fun
tions ~constants in the simplest cases!. Now we can derive
the effective boundary condition to these equations and m
the description in terms ofm closed. To this end we integrat
Eq. ~5! overAg33dx3 from S02 l S to S0 within the context of
hierarchy~3!. This yields the desired boundary condition
the form

Ag33

] f F

]~]3mk!
2

] f'

]mk
2

1

AgS

]sSAgS

] f i

]~]smk!
D

1
]~ f i1W1W13!

]mk
1lSmk50, ~9!

where the subscripts can take only values 1 and 2
The surface densitiesf i52K24f 24,S1K13f 13,S2 f' and
f'5K13„nn…(n¹…„nn… introduced in @10# contain the
normal-to-surface and tangential director derivatives, resp
tively; m and gi j are the surface values of the observab
director and metric tensor ofS. The quantityW13 is addi-
tional, aK13 connected anchoring term. It is induced by t
surface modes in the intermediate layer and appears only f
nonvanishingK13. Its origin follows from its form, i.e.,

]W13

]u
52

1

Ag33
E

S0

S02 l S
dzk138 s8~u!cos 2u. ~10!

Simple estimate withs8 ~8! yields

W13'
K11

16l S
S K13

Ke f
D 2

cos 4u

with easy axisu135p/4. For plausible valuesl S55l M ,
K13/Ke f;0.1, its magnitude; K11/(104l M) which is about
ten times smaller that the standard anchoring strength
however, K13/Ke f was about 1 thenW13;K11/(102l M),
which for smooth surfaces is larger than the observed
choring ~see also@18#!. Since usually surfaces have an ea
axis atu50 or u5p/2, the effect of strongW13 orienting the
director atp/4 would have been observed. Thus, experim
tal data support the inequalityK13/Ke f!1.

In terms of the anglesu andf, Eq. ~9! reads

Ag33

] f F

]~]3u!
2

K13

Ag33

~]3u!cos 2u2
1

AgS

]sSAgS

] f i

]~]su! D
1

]~W1W131 f i!

]u
50, ~11!

Ag33

] f F

]~]3f!
2

1

AgS

]sSAgS

] f i

]~]sf! D1
]~W1 f i!

]f
50.

~12!
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These boundary conditions along with the ‘‘naı¨ve’’ bulk
Euler-Lagrange equations~6! unambiguously determine th
observable directorm„x). Let us briefly describe some bas
properties of the general boundary conditions.

If u, f, andgi j depend on the single coordinatex3 , both
the K13 andK24 terms reduce to additional anchoring term
and do not manifest their elastic nature. This can be bri
illustrated forgi j 51 (plane layer!. In this case,f i[0 and
the u equation~11! reduces toKu81]We f /]u50, where
K5K111(K332K11)cos2u, and

We f~u!5E du

S 12
K13

K
cos 2u D

]~W1W13!

]u
. ~13!

However, if m depends on two or three coordinates~Carte-
sian or curvilinear! and the tangential derivatives] tm do not
vanish, thenf i enters theu-boundary condition~11!, and
both theK13 andK24 terms cannot be reduced to anchori
terms. Therefore, in general, theK13 term whose contribution
to the boundary condition contains the normal director
rivative produces elasticity that can be conventionally
ferred to as surfacelike.

V. THE ROLE OF F 2

For K1350, the observable director satisfies the equati
which minimize the naı¨ve functional F2. In contrast, for
K13Þ0, the only meaningful minimization can be perform
for Ftrue . Nonetheless,F2 has certain important implication
in finding the minimizers ofFtrue . Namely, if neq is a solu-
tion of the exact equations~5! while meq satisfies the system
~6! and ~9!, then up to small termsO( l Ss8),

Ftrue$neq%.F2$meq%1E dSW~meq!, ~14!
d

y

-
-

s

whereW is the total anchoring. We see that the meaning
F2 ~1! is that F2$meq% is equal to theequilibrium FE
Ftrue$neq% plus certain anchoring terms. This enables one
compare FEs for different solutionsmeq of the systems~6!
and~9! and select the one with lower FE. At the same tim
calculatingF2$mneq% for arbitrary nonequilibriumfunction
mneq has no meaning. In particular, comparing value
F2$mneq% for two different mneq or for mneq and meq is
meaningless, sincemneq is not a minimizer of the true FE
and is unstable. It is this forbidden procedure that has
sulted in the extra contribution}K13 to the boundary condi-
tion of Ref.@10# and, consequently, in a nonextremum dire
tor criticized in@22–24#. In contrast, boundary condition~9!,
which is derived from the ELE, automatically provides th
extremity.

In spite of the difference, boundary condition~9! and the
one proposed in@10# have important common propertie
they do not explicitly depend on higher order terms, and
K13 contribution corresponds to elasticity which, in gener
cannot be reduced to anchoring. The elastic nature of theK13

term was crucial to the conclusion of that fitting the expe
mental data on stripe domains in a thin nematic film is p
sible for nonzeroK13 @21#. Of course, this should be reex
amined in the context of the corrected boundary con
tion ~9!.
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